La profesora Juana María Gil, Premio Meridiana 2013 en «Iniciativas que promueven el desarrollo de valores para la igualdad entre las personas o empresas jóvenes”

La profesora del Departamento de Filosofía del Derecho de la Universidad de Granada, Juana María Gil Ruiz, ha obtenido el Premio Meridiana 2013 en la categoría de «Iniciativas que promueven el desarrollo de valores para la igualdad entre las personas o empresas jóvenes». El galardón, otorgado por la Consejería de la Presidencia e Igualdad de la Junta de Andalucía, le será entregado, por el presidente José Antonio Griñán, el próximo lunes, 11 de marzo, en el Teatro Central de Sevilla (C/ José Gálvez. Isla de la Cartuja), a las 12 horas.

La Junta de Andalucía ha concedido dos Premios Meridiana 2013, en la categoría «Iniciativas que promueven el desarrollo de valores para la igualdad entre las personas o empresas jóvenes», que han recaído en Juana María Gil Ruiz, profesora de Filosofía del Derecho de la Universidad de Granada e investigadora de las políticas de igualdad, y Trinidad Núñez, profesora de las facultades de Psicología y Comunicación de la Universidad de Sevilla, que dedica su carrera docente a la defensa de la igualdad de género.

Juana María Gil

La profesora Juana María Gil es titular de Filosofía del Derecho de la Universidad de Granada, asesora de la Dirección General de Violencia de Género en Andalucía, vocal del Observatorio Andaluz de Violencia de Género y colaboradora del Instituto Andaluz de la Mujer.

Premio Extraordinario de Licenciatura en Derecho y Premio Extraordinario de Doctorado en Derecho, con la primera Tesis de Género en el Área jurídica de la Universidad de Granada, es profesora de postgrado y másteres en estudios de género e igualdad organizados por diferentes universidades españolas, así como profesora en cursos especializados de género organizados por diferentes instituciones locales, provinciales, autonómicas y nacionales, para personal cualificado.

Pertenece al Comité Científico de las prestigiosas revistas jurídicas «Anales de la Cátedra Francisco Suárez» y «Revista de la Facultad de Derecho de la Universidad de Granada». Ha sido vicedecana de Relaciones Internacionales de la Universidad de Granada.

Recientemente ha sido galardonada con el prestigioso Premio «Ángeles Durán» de Innovación Científica en Estudios de Género. Sus líneas de investigación más significativas son: Teoría jurídica feminista, Violencia de género, Políticas de igualdad y Derechos humanos.
Actualmente trabaja en investigaciones vinculadas a proyectos de investigación I+D+i del Ministerio de Ciencia e Innovación, Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Proyecto de Excelencia), del CGPJ, y de la Dirección General de Violencia de Género en Andalucía, que garantizan la transferencia del conocimiento, tales como «Estudio sobre la aplicación de la Ley Orgánica 3/2007, de 22 de marzo, para la Igualdad Efectiva de Mujeres y Hombres (2011)»; «Lenguaje jurídico y género (2012)»; «Dignidad e Igualdad en derechos: el acoso en el trabajo 2012)»; «Acoso sexual y acoso por razón de sexo: actuación de las administraciones públicas y de las empresas (2013)».

Ha publicado 5 monografías, 2 libros como directora y editora de la obra, 22 capítulos de libros y decenas de artículos científicos internacionales y nacionales desde la Filosofía del Derecho, tales como: teoría jurídica feminista, violencia de género, políticas de igualdad y derechos humanos, el pensamiento de John Stuart Mill y los dilemas de la Bioética y el Derecho. Sus últimas monografías se titulan: «Las nuevas técnicas legislativas en España», (2012, Tirant lo Blanch, Valencia), «Dignidad e igualdad en derechos: el acoso en el trabajo» (2012, Dykinson), y «Los diferentes rostros de la violencia de género» (2007, Dykinson, Madrid).

Recientemente ha sido requerida por la ONU como experta para participar en el marco del Programa Regional de AECID, en coordinación con el Centro Regional de PNUD, en la mesa internacional de Técnicas Legislativas, en Panamá.

Descargar


New Hypothesis on Why Bacteria are Becoming Increasingly More Resistant to Antibiotics

In an article published in the journal Archives of Microbiology, a researcher from the University of Granada in Spain provides an answer to an enigma that scientists have still not been able to solve. According to his theory, bacteria that are non-resistant to antibiotics acquire said resistance accidentally because they take up the DNA of others that are resistant, due to the stress to which they are subjected.

A University of Granada researcher has formulated a new hypothesis concerning an enigma that the scientific community has still not been able to solve and which could revolutionise the pharmaceutical industry: Why are bacteria becoming increasingly more resistant to antibiotics? His work has revealed that the use of antibiotics can even cause non-resistant bacteria to become resistant because they take up the DNA of others that are already resistant.

Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of theUGR, maintains that our abuse of antibiotics «forces» thebacteria to take up the DNA of other bacteria that are resistant tosaid antibiotics, since the presence of antibiotics exposes them to agreat stress. According to the researcher, «In this way, thenon-resistant bacteria become resistant completely by accident oningesting this DNA and can even become much more virulent, partly dueto the stress we subject them to when we make an abusive use ofantibiotics.»

For decades, scientists from all over the world have been researching into when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming also resistant. The answers as to when there is DNA uptake (in unfavourable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material,» as Bakkali points out in an article published in the latest edition of the journal Archives of Microbiology.

Under normal conditions,a bacterium could have a lot to lose if it ‘decides’ to take up DNA, since it does not have a ‘DNA reader’ enabling it to take up only those molecules that are of use to it and the most likely isthat this DNA will be dangerous, or even lethal. They do not want that DNA, because they break it up.

In his article, Bakkali argues that, in reality, bacteria do not look for DNA to take up (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake is a chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.

Therefore, current indiscriminate use of antibiotics «not only selects theresistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to» according to Bakkali. The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic bybacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.

The UGR researcher states that, when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.»Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of a Ataphylococcus, Staphylococcus aureus, which creates havoc in many operating theaters.

Reference: Could DNA Uptake Be a Side Effect of Bacterial Adhesion and Twitching Motility? M.Bakkali. Archives of Microbiology (Springer). DOI10.1007/s00203-013-0870-1

Descargar


New Hypothesis on Why Bacteria are Becoming Increasingly More Resistant to Antibiotics

In an article published in the journal Archives of Microbiology, a researcher from the University of Granada in Spain provides an answer to an enigma that scientists have still not been able to solve. According to his theory, bacteria that are non-resistant to antibiotics acquire said resistance accidentally because they take up the DNA of others that are resistant, due to the stress to which they are subjected.

A University of Granada researcher has formulated a new hypothesis concerning an enigma that the scientific community has still not been able to solve and which could revolutionise the pharmaceutical industry: Why are bacteria becoming increasingly more resistant to antibiotics? His work has revealed that the use of antibiotics can even cause non-resistant bacteria to become resistant because they take up the DNA of others that are already resistant.

Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of theUGR, maintains that our abuse of antibiotics «forces» thebacteria to take up the DNA of other bacteria that are resistant tosaid antibiotics, since the presence of antibiotics exposes them to agreat stress. According to the researcher, «In this way, thenon-resistant bacteria become resistant completely by accident oningesting this DNA and can even become much more virulent, partly dueto the stress we subject them to when we make an abusive use ofantibiotics.»

For decades, scientists from all over the world have been researching into when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming also resistant. The answers as to when there is DNA uptake (in unfavourable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material,» as Bakkali points out in an article published in the latest edition of the journal Archives of Microbiology.

Under normal conditions,a bacterium could have a lot to lose if it ‘decides’ to take up DNA, since it does not have a ‘DNA reader’ enabling it to take up only those molecules that are of use to it and the most likely isthat this DNA will be dangerous, or even lethal. They do not want that DNA, because they break it up.

In his article, Bakkali argues that, in reality, bacteria do not look for DNA to take up (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake is a chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.

Therefore, current indiscriminate use of antibiotics «not only selects theresistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to» according to Bakkali. The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic bybacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.

The UGR researcher states that, when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.»Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of a Ataphylococcus, Staphylococcus aureus, which creates havoc in many operating theaters.

Reference: Could DNA Uptake Be a Side Effect of Bacterial Adhesion and Twitching Motility? M.Bakkali. Archives of Microbiology (Springer). DOI10.1007/s00203-013-0870-1

Descargar


New Hypothesis on Why Bacteria are Becoming Increasingly More Resistant to Antibiotics

In an article published in the journal Archives of Microbiology, a researcher from the University of Granada in Spain provides an answer to an enigma that scientists have still not been able to solve. According to his theory, bacteria that are non-resistant to antibiotics acquire said resistance accidentally because they take up the DNA of others that are resistant, due to the stress to which they are subjected.

A University of Granada researcher has formulated a new hypothesis concerning an enigma that the scientific community has still not been able to solve and which could revolutionise the pharmaceutical industry: Why are bacteria becoming increasingly more resistant to antibiotics? His work has revealed that the use of antibiotics can even cause non-resistant bacteria to become resistant because they take up the DNA of others that are already resistant.

Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of theUGR, maintains that our abuse of antibiotics «forces» thebacteria to take up the DNA of other bacteria that are resistant tosaid antibiotics, since the presence of antibiotics exposes them to agreat stress. According to the researcher, «In this way, thenon-resistant bacteria become resistant completely by accident oningesting this DNA and can even become much more virulent, partly dueto the stress we subject them to when we make an abusive use ofantibiotics.»

For decades, scientists from all over the world have been researching into when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming also resistant. The answers as to when there is DNA uptake (in unfavourable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material,» as Bakkali points out in an article published in the latest edition of the journal Archives of Microbiology.

Under normal conditions,a bacterium could have a lot to lose if it ‘decides’ to take up DNA, since it does not have a ‘DNA reader’ enabling it to take up only those molecules that are of use to it and the most likely isthat this DNA will be dangerous, or even lethal. They do not want that DNA, because they break it up.

In his article, Bakkali argues that, in reality, bacteria do not look for DNA to take up (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake is a chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.

Therefore, current indiscriminate use of antibiotics «not only selects theresistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to» according to Bakkali. The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic bybacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.

The UGR researcher states that, when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.»Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of a Ataphylococcus, Staphylococcus aureus, which creates havoc in many operating theaters.

Reference: Could DNA Uptake Be a Side Effect of Bacterial Adhesion and Twitching Motility? M.Bakkali. Archives of Microbiology (Springer). DOI10.1007/s00203-013-0870-1

Descargar


Real Madrid o FC Barcelona podrían prevenir la lesión de sus estrellas gracias al dispositivo ‘Haefni’

El Real Madrid o el FC Barcelona podrían prevenir la lesión de sus grandes estrellas o acortar los plazos de recuperación gracias al dispositivo ‘Haefni’, desarrollado por una empresa 100 por 100 española, iVolution R&D, que permite la rehabilitación y readaptación del sistema muscular, óseo, cardiovascular y locomotor.

Al acto de presentación de ‘Haefni’, celebrado este jueves en los bajos del estadio Santiago Bernabéu, acudieron el Director Ejecutivo (CEO) de iVolution, José Gutiérrez; los doctores Jesús Olmo y Luis Serratosa, médico del Real Madrid; y el campeón del mundo de pádel, Juan Martín Díaz, entre otros.

Heafni, un proyecto que nació hace cuatro años en la Facultad de Ciencias de la Universidad de Granada, es un sistema isocinético de tercera generación, «o pleocinético», que permite valorar la fuerza del deportista profesional o popular y entrenar, además de emplearse en la prevención de lesiones, de las recaídas y en reducir los tiempos de recuperación.

«Nos permite valorar desde las lesiones hasta ver cómo un deportista profesional o aficionado o un paciente va progresando en su proceso de recuperación. Esto es un aspecto importante porque en el deporte se nos exige un plazo para que el futbolista pueda regresar a la competición», ha comentado Luis Serratosa.

Haefni, con un precio de casi 16.000 euros (15.990), se empezará a comercializar desde este jueves 7 de marzo. La Clínica Quirón de Madrid ya ha adquirido una unidad, aunque el objetivo, según José Gutiérrez, es que lo compren «centros deportivos, médicos y clubes profesionales, como el Real Madrid o el Barça».

 

Descargar


Real Madrid o FC Barcelona podrían prevenir la lesión de sus estrellas gracias al dispositivo ‘Haefni’

El Real Madrid o el FC Barcelona podrían prevenir la lesión de sus grandes estrellas o acortar los plazos de recuperación gracias al dispositivo ‘Haefni’, desarrollado por una empresa 100 por 100 española, iVolution R&D, que permite la rehabilitación y readaptación del sistema muscular, óseo, cardiovascular y locomotor.

Al acto de presentación de ‘Haefni’, celebrado este jueves en los bajos del estadio Santiago Bernabéu, acudieron el Director Ejecutivo (CEO) de iVolution, José Gutiérrez; los doctores Jesús Olmo y Luis Serratosa, médico del Real Madrid; y el campeón del mundo de pádel, Juan Martín Díaz, entre otros.

Heafni, un proyecto que nació hace cuatro años en la Facultad de Ciencias de la Universidad de Granada, es un sistema isocinético de tercera generación, «o pleocinético», que permite valorar la fuerza del deportista profesional o popular y entrenar, además de emplearse en la prevención de lesiones, de las recaídas y en reducir los tiempos de recuperación.

«Nos permite valorar desde las lesiones hasta ver cómo un deportista profesional o aficionado o un paciente va progresando en su proceso de recuperación. Esto es un aspecto importante porque en el deporte se nos exige un plazo para que el futbolista pueda regresar a la competición», ha comentado Luis Serratosa.

Haefni, con un precio de casi 16.000 euros (15.990), se empezará a comercializar desde este jueves 7 de marzo. La Clínica Quirón de Madrid ya ha adquirido una unidad, aunque el objetivo, según José Gutiérrez, es que lo compren «centros deportivos, médicos y clubes profesionales, como el Real Madrid o el Barça».

 

Descargar


Real Madrid o FC Barcelona podrían prevenir la lesión de sus estrellas gracias al dispositivo ‘Haefni’

El Real Madrid o el FC Barcelona podrían prevenir la lesión de sus grandes estrellas o acortar los plazos de recuperación gracias al dispositivo ‘Haefni’, desarrollado por una empresa 100 por 100 española, iVolution R&D, que permite la rehabilitación y readaptación del sistema muscular, óseo, cardiovascular y locomotor.

Al acto de presentación de ‘Haefni’, celebrado este jueves en los bajos del estadio Santiago Bernabéu, acudieron el Director Ejecutivo (CEO) de iVolution, José Gutiérrez; los doctores Jesús Olmo y Luis Serratosa, médico del Real Madrid; y el campeón del mundo de pádel, Juan Martín Díaz, entre otros.

Heafni, un proyecto que nació hace cuatro años en la Facultad de Ciencias de la Universidad de Granada, es un sistema isocinético de tercera generación, «o pleocinético», que permite valorar la fuerza del deportista profesional o popular y entrenar, además de emplearse en la prevención de lesiones, de las recaídas y en reducir los tiempos de recuperación.

«Nos permite valorar desde las lesiones hasta ver cómo un deportista profesional o aficionado o un paciente va progresando en su proceso de recuperación. Esto es un aspecto importante porque en el deporte se nos exige un plazo para que el futbolista pueda regresar a la competición», ha comentado Luis Serratosa.

Haefni, con un precio de casi 16.000 euros (15.990), se empezará a comercializar desde este jueves 7 de marzo. La Clínica Quirón de Madrid ya ha adquirido una unidad, aunque el objetivo, según José Gutiérrez, es que lo compren «centros deportivos, médicos y clubes profesionales, como el Real Madrid o el Barça».

 

Descargar


Why are bacteria increasingly resistant to antibiotics?

A University of Granada researcher has formulated a new hypothesis concerning an enigma that the scientific community has still not been able to solve and which could revolutionise the pharmaceutical industry: Why are bacteria becoming increasingly more resistant to antibiotics?
His work has revealed that the use of antibiotics can even cause non-resistant bacteria to become resistant because they take up the DNA of others that are already resistant.
Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of theUGR, maintains that our abuse of antibiotics «forces» thebacteria to take up the DNA of other bacteria that are resistant tosaid antibiotics, since the presence of antibiotics exposes them to agreat stress. According to the researcher, «In this way, thenon-resistant bacteria become resistant completely by accident oningesting this DNA and can even become much more virulent, partly dueto the stress we subject them to when we make an abusive use ofantibiotics».
For decades, scientists from all over the world have been researching into when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming also resistant. The answers as to when there is DNA uptake (in unfavourable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material»,as Bakkali points out in an article published in the latest edition of the journal «Archives of Microbiology».
Under normal conditions,a bacterium could have a lot to lose if it ‘decides’ to take up DNA, since it does not have a ‘DNA reader’ enabling it to take up only those molecules that are of use to it and the most likely isthat this DNA will be dangerous, or even lethal.
Theydo not want that DNA, because they break it up
In his article, Mohammed Bakkali argues that, in reality, bacteria do not look for DNA to takeup (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake isa chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.
Therefore,our current indiscriminate use of antibiotics «not only selects theresistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to». The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic bybacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.
The UGR researcher states that, when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.»Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of astaphylococcus, called Staphylococcus aurius, which creates havoc in many operating theatres.
Reference:
Could DNA Uptake Be a Side Effect of Bacterial Adhesion and Twitching Motility?
M.Bakkali. Archives of Microbiology (Springer). DOI10.1007/s00203-013-0870-1
The article is available online via the following link: http://link.springer.com/article/10.1007/s00203-013-0870-

Read more at http://scienceblog.com/60887/why-are-bacteria-increasingly-resistant-to-antibiotics/#kwKY4AhI6hkIAekR.99

Descargar


Why are bacteria increasingly resistant to antibiotics?

A University of Granada researcher has formulated a new hypothesis concerning an enigma that the scientific community has still not been able to solve and which could revolutionise the pharmaceutical industry: Why are bacteria becoming increasingly more resistant to antibiotics?
His work has revealed that the use of antibiotics can even cause non-resistant bacteria to become resistant because they take up the DNA of others that are already resistant.
Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of theUGR, maintains that our abuse of antibiotics «forces» thebacteria to take up the DNA of other bacteria that are resistant tosaid antibiotics, since the presence of antibiotics exposes them to agreat stress. According to the researcher, «In this way, thenon-resistant bacteria become resistant completely by accident oningesting this DNA and can even become much more virulent, partly dueto the stress we subject them to when we make an abusive use ofantibiotics».
For decades, scientists from all over the world have been researching into when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming also resistant. The answers as to when there is DNA uptake (in unfavourable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material»,as Bakkali points out in an article published in the latest edition of the journal «Archives of Microbiology».
Under normal conditions,a bacterium could have a lot to lose if it ‘decides’ to take up DNA, since it does not have a ‘DNA reader’ enabling it to take up only those molecules that are of use to it and the most likely isthat this DNA will be dangerous, or even lethal.
Theydo not want that DNA, because they break it up
In his article, Mohammed Bakkali argues that, in reality, bacteria do not look for DNA to takeup (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake isa chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.
Therefore,our current indiscriminate use of antibiotics «not only selects theresistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to». The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic bybacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.
The UGR researcher states that, when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.»Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of astaphylococcus, called Staphylococcus aurius, which creates havoc in many operating theatres.
Reference:
Could DNA Uptake Be a Side Effect of Bacterial Adhesion and Twitching Motility?
M.Bakkali. Archives of Microbiology (Springer). DOI10.1007/s00203-013-0870-1
The article is available online via the following link: http://link.springer.com/article/10.1007/s00203-013-0870-

Read more at http://scienceblog.com/60887/why-are-bacteria-increasingly-resistant-to-antibiotics/#kwKY4AhI6hkIAekR.99

Descargar


Alumnos de la Universidad de Granada visitan EDAR de las Lagunas de Ruidera

Un grupo de alumnos del Máster Técnicas y Ciencias de la Calidad del Agua de la Universidad de Granada ha visitado hoy la Estación Depuradora de Aguas Residuales (EDAR) de Lagunas de Ruidera (Ciudad Real), que ha sido construida por la Sociedad Estatal Aguas de las Cuencas del Sur (Acuasur).
El objetivo de la visita, según ha informado hoy Acuasur en un comunicado, ha sido que los alumnos de la asignatura ‘Conservación de Sistemas Acuáticos’ del Master en Técnicas y Ciencias de la Calidad del Agua adquieran conocimientos relacionados con aquellas actuaciones encaminadas a la gestión y conservación de los ecosistemas de las Lagunas de Ruidera y humedales en general.
Durante su visita han podido comprobar las obras ejecutadas por Acuasur en los últimos años y que incluían la ampliación de la EDAR existente y la ejecución de una red de colectores de 18,2 kilómetros de longitud.
Los alumnos han podido conocer cómo ha sido diseñada la depuradora que cuenta con una capacidad de tratamiento de 1.725 m3/día, para tratar las aguas residuales de una población de 8.500 habitantes equivalentes.
La red de colectores permite recoger las aguas residuales de los núcleos de población diseminados por el Parque Natural.
Para minimizar el impacto de las obras, los trazados de los colectores se han realizado bajo los viales existentes y utilizando parte de un antiguo
Descargar


Alumnos de la Universidad de Granada visitan EDAR de las Lagunas de Ruidera

Un grupo de alumnos del Máster Técnicas y Ciencias de la Calidad del Agua de la Universidad de Granada ha visitado hoy la Estación Depuradora de Aguas Residuales (EDAR) de Lagunas de Ruidera (Ciudad Real), que ha sido construida por la Sociedad Estatal Aguas de las Cuencas del Sur (Acuasur).
El objetivo de la visita, según ha informado hoy Acuasur en un comunicado, ha sido que los alumnos de la asignatura ‘Conservación de Sistemas Acuáticos’ del Master en Técnicas y Ciencias de la Calidad del Agua adquieran conocimientos relacionados con aquellas actuaciones encaminadas a la gestión y conservación de los ecosistemas de las Lagunas de Ruidera y humedales en general.
Durante su visita han podido comprobar las obras ejecutadas por Acuasur en los últimos años y que incluían la ampliación de la EDAR existente y la ejecución de una red de colectores de 18,2 kilómetros de longitud.
Los alumnos han podido conocer cómo ha sido diseñada la depuradora que cuenta con una capacidad de tratamiento de 1.725 m3/día, para tratar las aguas residuales de una población de 8.500 habitantes equivalentes.
La red de colectores permite recoger las aguas residuales de los núcleos de población diseminados por el Parque Natural.
Para minimizar el impacto de las obras, los trazados de los colectores se han realizado bajo los viales existentes y utilizando parte de un antiguo
Descargar


Why Are Bacteria Becoming Increasingly More Resistant To Antibiotics?

A University of Granada researcher has a new hypothesis concerning why bacteria seem to becoming increasingly more resistant to antibiotics.

Bacteria are incredibly versatile – they have been found in some of the most extreme conditions on the planet, and it may be just evolution in action. In this instance, Mohammed Bakkali, a scientist in the Genetics Department at the Faculty of Science of the UGR,

believes that bacteria that are non-resistant to antibiotics acquire resistance ‘accidentally’ because they take up the DNA of others that are resistant, due to the stress to which they are subjected.

Like anything else, too much of a good thing can be bad and overuse and misuse of antibiotics has exacerbated resistance problems. Whereas we mistakenly banned the use of DDT due to misuse, antibiotics are not going away, so researchers have spent decades examining when, how and why bacteria take up DNA from other antibiotic-resistant bacteria, thus becoming resistant. The answers as to when there is DNA uptake (in unfavorable or stressful circumstances) and as to how the bacteria take it up are clear, but, up until now, «nobody has pinpointed the reason why bacteria ingest this genetic material» Bakkali notes.

Bacterial colonies growing in a hazardous substrate. Credit: University of Granada

In his article, Mohammed Bakkali argues that bacteria do not look for DNA to incorporate (they appear not to ‘want’ this DNA, since they are constantly degrading it; in other words, breaking it up) and that this uptake is a chance event and the sub-product of a type of bacterial motility that is part of its response to the stress that the bacteria may be subjected to.

The indiscriminate use of antibiotics «not only selects the resistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to».

The result is that the stress caused by the antibiotic itself induces the uptake of genetic material that can bring about resistance to the antibiotic by bacteria that, otherwise, would not have taken up that DNA nor become resistant to the antibiotic. Furthermore, this effect is strengthened by its lack of specificity, since it occurs both in the target pathogen and in other bacteria.

He says that when a bacterium takes up DNA from another antibiotic-resistantone (and which could have died due to another environmental factor), the bacterium that takes it up becomes resistant to that antibiotic.

«Thus, the bacteria can go on adding to their arsenal of resistance to antibiotics and end up being resistant to a wide range of them, such as is the case of the multi-resistant strain of a staphylococcus, called Staphylococcus aurius, which creates havoc in many operating theatres.

Published in Archives of Microbiology

Descargar