Ideal

Pág. 7: Cuenca pide a Fomento y a la Junta que acometan los accesos al PTS

Pág. 10: OnGranada Tech City recluta embajadores por toda Europa

Conferencia de Bruni sobre economía de la vida

Pág. 12: La UGR ayudará a pagar el alojamiento a 101 universitarios

Científicos desarrollan una ‘app’ que permite determinar la fuerza nuclear

Pág. 53: Hoy comienzan las Jornadas Taurinas Universitarias y una muestra sobre los Bienvenida

Pág. 65: Agenda:

– Conferencias: 

‘Hombres y plantas en la cultura andalusí’

Conferencia de la arquitecta brasileña Carla Juaçaba

– Exposiciones:

‘Acuarelismos’

‘TREPAT. Vanguardias fotográficas: un caso de estudio’

Descarga por URL: http://sl.ugr.es/07u1

Descargar


Ideal

Pág. 7: Cuenca pide a Fomento y a la Junta que acometan los accesos al PTS

Pág. 10: OnGranada Tech City recluta embajadores por toda Europa

Conferencia de Bruni sobre economía de la vida

Pág. 12: La UGR ayudará a pagar el alojamiento a 101 universitarios

Científicos desarrollan una ‘app’ que permite determinar la fuerza nuclear

Pág. 53: Hoy comienzan las Jornadas Taurinas Universitarias y una muestra sobre los Bienvenida

Pág. 65: Agenda:

– Conferencias: 

‘Hombres y plantas en la cultura andalusí’

Conferencia de la arquitecta brasileña Carla Juaçaba

– Exposiciones:

‘Acuarelismos’

‘TREPAT. Vanguardias fotográficas: un caso de estudio’

Descarga por URL: http://sl.ugr.es/07u1

Descargar


Recent research provides new data on chemical gardens, whose formation is a mystery for science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.

 Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been a veritable mystery for the scientific community.

Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.

Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to understand their role in the origin of life, thanks to the energy they can store.

To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)

The fact that these different processes interact in a complex way without any sort of control whatsoever provokes the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in this process. This precludes detailed understanding of the growth mechanisms of these structures.

An almost bi-dimensional confined environment

In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to obtain an important collection of reproducible structures by having the chemical gardens grow in a confined, almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.

The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents, and of the flow of injection allows for the study of the relative importance of chemical processes and transport within the selection of the shape in the precipitate.

Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the mechanisms that produce their formation.

For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric models.

These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at obtaining a better control of the physical and chemical properties of self-assembled solid materials.

The University of Granada pioneers research in confined chemical gardens, a fact corroborated by the fact that the Andalusian Institute of Earth Sciences has several researchers at work on this subject.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Descargar


Recent research provides new data on chemical gardens, whose formation is a mystery for science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.

 Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been a veritable mystery for the scientific community.

Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.

Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to understand their role in the origin of life, thanks to the energy they can store.

To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)

The fact that these different processes interact in a complex way without any sort of control whatsoever provokes the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in this process. This precludes detailed understanding of the growth mechanisms of these structures.

An almost bi-dimensional confined environment

In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to obtain an important collection of reproducible structures by having the chemical gardens grow in a confined, almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.

The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents, and of the flow of injection allows for the study of the relative importance of chemical processes and transport within the selection of the shape in the precipitate.

Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the mechanisms that produce their formation.

For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric models.

These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at obtaining a better control of the physical and chemical properties of self-assembled solid materials.

The University of Granada pioneers research in confined chemical gardens, a fact corroborated by the fact that the Andalusian Institute of Earth Sciences has several researchers at work on this subject.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Descargar


New Data on Chemical Gardens, Whose Formation is a Mystery for Science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.

 

Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been a veritable mystery for the scientific community.

Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.

Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to understand their role in the origin of life, thanks to the energy they can store.

To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)

The fact that these different processes interact in a complex way without any sort of control whatsoever provokes the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in this process. This precludes detailed understanding of the growth mechanisms of these structures.

An almost bi-dimensional confined environment

In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to obtain an important collection of reproducible structures by having the chemical gardens grow in a confined, almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.

The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents, and of the flow of injection allows for the study of the relative importance of chemical processes and transport within the selection of the shape in the precipitate.

Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the mechanisms that produce their formation.

For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric models.

These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at obtaining a better control of the physical and chemical properties of self-assembled solid materials.

Descargar


New Data on Chemical Gardens, Whose Formation is a Mystery for Science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.

 

Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been a veritable mystery for the scientific community.

Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.

Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to understand their role in the origin of life, thanks to the energy they can store.

To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)

The fact that these different processes interact in a complex way without any sort of control whatsoever provokes the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in this process. This precludes detailed understanding of the growth mechanisms of these structures.

An almost bi-dimensional confined environment

In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to obtain an important collection of reproducible structures by having the chemical gardens grow in a confined, almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.

The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents, and of the flow of injection allows for the study of the relative importance of chemical processes and transport within the selection of the shape in the precipitate.

Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the mechanisms that produce their formation.

For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric models.

These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at obtaining a better control of the physical and chemical properties of self-assembled solid materials.

Descargar


Xerostomie: Warnsignal für schlechte Asthmakontrolle

74535 Spanische Wissenschaftler haben den Beweis dafür erbracht, dass Asthmapatienten, die an Mundtrockenheit (Xerostomie) leiden, ihre chronische Atemwegserkrankung nur schlecht im Griff haben.

 

Ob ein Asthmatiker auch an einer schweren Xerostomie leidet, kann also für den Pneumologen von großer Bedeutung sein, wenn es darum geht, das Level der Krankheitskontrolle zu beurteilen.

Bei der Xerostomie handelt es sich um eine subjektive Trockenheit des Mundes aufgrund einer Speicheldrüsendysfunktion. Rund 50 Prozent aller Menschen jenseits des 60. Lebensjahres sind davon betroffen; bei stationär behandelten Patienten können es sogar mehr als 90 Prozent sein. Die Xerostomie ist eine Begleiterscheinung bei vielen Erkrankungen und beeinträchtigt neben der Mundgesundheit auch die Lebensqualität.

Inhalative Corticosteroide als Teil einer Asthmatherapie besitzen eine sehr geringe Bioverfügbarkeit und wirken hauptsächlich lokal und somit auch über die Mundschleimhaut. Welche Auswirkungen inhalative Corticosteroide dort haben, sei bislang kaum untersucht worden, fanden die Autoren der aktuellen Studie.

Sie analysierten die Daten von 57 Asthma-Patienten und 17 gesunden Probanden und konnten bestätigen, dass ein großer Teil der Asthma-Patienten an Xerostomie litt. „Unsere Daten deuten darauf hin, dass Therapien mit hohen Dosierungen inhalativer Corticosteroide die Produktion des Speichelproteins MUC5B senken, dass eine protektive Wirkung auf die Wangenschleimhaut besitzt», erklärt Prof. Pedro José Romero Palacios von der Universität Granada und Hauptautor der Studie. Das führt zu Xerostomie und im Allgemeinen auch zu einer schlechteren Asthmakontrolle, wenn der Patienten deshalb nicht therapieadhärent ist.

Descargar


Xerostomie: Warnsignal für schlechte Asthmakontrolle

74535 Spanische Wissenschaftler haben den Beweis dafür erbracht, dass Asthmapatienten, die an Mundtrockenheit (Xerostomie) leiden, ihre chronische Atemwegserkrankung nur schlecht im Griff haben.

 

Ob ein Asthmatiker auch an einer schweren Xerostomie leidet, kann also für den Pneumologen von großer Bedeutung sein, wenn es darum geht, das Level der Krankheitskontrolle zu beurteilen.

Bei der Xerostomie handelt es sich um eine subjektive Trockenheit des Mundes aufgrund einer Speicheldrüsendysfunktion. Rund 50 Prozent aller Menschen jenseits des 60. Lebensjahres sind davon betroffen; bei stationär behandelten Patienten können es sogar mehr als 90 Prozent sein. Die Xerostomie ist eine Begleiterscheinung bei vielen Erkrankungen und beeinträchtigt neben der Mundgesundheit auch die Lebensqualität.

Inhalative Corticosteroide als Teil einer Asthmatherapie besitzen eine sehr geringe Bioverfügbarkeit und wirken hauptsächlich lokal und somit auch über die Mundschleimhaut. Welche Auswirkungen inhalative Corticosteroide dort haben, sei bislang kaum untersucht worden, fanden die Autoren der aktuellen Studie.

Sie analysierten die Daten von 57 Asthma-Patienten und 17 gesunden Probanden und konnten bestätigen, dass ein großer Teil der Asthma-Patienten an Xerostomie litt. „Unsere Daten deuten darauf hin, dass Therapien mit hohen Dosierungen inhalativer Corticosteroide die Produktion des Speichelproteins MUC5B senken, dass eine protektive Wirkung auf die Wangenschleimhaut besitzt», erklärt Prof. Pedro José Romero Palacios von der Universität Granada und Hauptautor der Studie. Das führt zu Xerostomie und im Allgemeinen auch zu einer schlechteren Asthmakontrolle, wenn der Patienten deshalb nicht therapieadhärent ist.

Descargar


Xerostomie: Warnsignal für schlechte Asthmakontrolle

74535 Spanische Wissenschaftler haben den Beweis dafür erbracht, dass Asthmapatienten, die an Mundtrockenheit (Xerostomie) leiden, ihre chronische Atemwegserkrankung nur schlecht im Griff haben.

 

Ob ein Asthmatiker auch an einer schweren Xerostomie leidet, kann also für den Pneumologen von großer Bedeutung sein, wenn es darum geht, das Level der Krankheitskontrolle zu beurteilen.

Bei der Xerostomie handelt es sich um eine subjektive Trockenheit des Mundes aufgrund einer Speicheldrüsendysfunktion. Rund 50 Prozent aller Menschen jenseits des 60. Lebensjahres sind davon betroffen; bei stationär behandelten Patienten können es sogar mehr als 90 Prozent sein. Die Xerostomie ist eine Begleiterscheinung bei vielen Erkrankungen und beeinträchtigt neben der Mundgesundheit auch die Lebensqualität.

Inhalative Corticosteroide als Teil einer Asthmatherapie besitzen eine sehr geringe Bioverfügbarkeit und wirken hauptsächlich lokal und somit auch über die Mundschleimhaut. Welche Auswirkungen inhalative Corticosteroide dort haben, sei bislang kaum untersucht worden, fanden die Autoren der aktuellen Studie.

Sie analysierten die Daten von 57 Asthma-Patienten und 17 gesunden Probanden und konnten bestätigen, dass ein großer Teil der Asthma-Patienten an Xerostomie litt. „Unsere Daten deuten darauf hin, dass Therapien mit hohen Dosierungen inhalativer Corticosteroide die Produktion des Speichelproteins MUC5B senken, dass eine protektive Wirkung auf die Wangenschleimhaut besitzt», erklärt Prof. Pedro José Romero Palacios von der Universität Granada und Hauptautor der Studie. Das führt zu Xerostomie und im Allgemeinen auch zu einer schlechteren Asthmakontrolle, wenn der Patienten deshalb nicht therapieadhärent ist.

Descargar


Study provides new data on chemical gardens, whose formation is a mystery for science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of
Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid
salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.
Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated
during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The
first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been
a veritable mystery for the scientific community.
Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens
present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the
hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.
Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to
understand their role in the origin of life, thanks to the energy they can store.
To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a
container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the
combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)
The fact that these different processes interact in a complex way without any sort of control whatsoever provokes
the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in
this process. This precludes detailed understanding of the growth mechanisms of these structures.Credit: University of Granada
An almost bi-dimensional confined environment
In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and
from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to
obtain an important collection of reproducible structures by having the chemical gardens grow in a confined,
almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.
The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within
another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents,
and of the flow of injection allows for the study of the relative importance of chemical processes and transport
within the selection of the shape in the precipitate.Credit: University of Granada
Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way
a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the
mechanisms that produce their formation.
For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs
with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric
models.
These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at
obtaining a better control of the physical and chemical properties of self-assembled solid materials.
Credit: University of Granada
Explore further: Researchers devise a means for growing near 2-D chemical gardens (w/ Video)
More information: Florence Haudin, Julyan H. E. Cartwright, Fabian Brau, and A. De Wit, Spiral
precipitation patterns in confined chemical gardens, PNAS 2014; published ahead of print November 10, 2014,
Descargar


Study provides new data on chemical gardens, whose formation is a mystery for science

74819 Recent research which has counted with the participation of the University of Granada Andalusian Institute of
Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid
salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate.
Self-contained chemical gardens are formed through the self-assembly of mineral precipitates generated
during certain chemical reactions, and they produce coloured forms that resemble vegetable structures. The
first researcher who watched them was Johann Rudolf Glauber in 1646, and since then their formation has been
a veritable mystery for the scientific community.
Besides their popularity in chemistry experiments for massive audiences, self-contained chemical gardens
present analogies with a variety of natural systems, such as the ice channels formed underneath sea ice or the
hydrothermal chimneys at the bottom of the oceans where it is believed that life on earth could have originated.
Their growth patterns are being studied today fundamentally to produce new self-structuring materials, or to
understand their role in the origin of life, thanks to the energy they can store.
To produce a chemical garden in the lab, one typically introduces a metallic salt in an alkaline solution within a
container. This leads to the growth of a series of irregular, tubular, multi-coloured structures thanks to the
combined action of different physical processes (osmotic pressure, gravity effects, reactions and diffusion)
The fact that these different processes interact in a complex way without any sort of control whatsoever provokes
the irregularity, and above all the impossibility of reproducing the obtained three-dimensional forms obtained in
this process. This precludes detailed understanding of the growth mechanisms of these structures.Credit: University of Granada
An almost bi-dimensional confined environment
In this context, researchers from the Non-linear Physical Chemistry Unity at the Free University of Brussels, and
from the University of Granada Andalusian Institute of Earth Sciences have demonstrated that it is possible to
obtain an important collection of reproducible structures by having the chemical gardens grow in a confined,
almost bi-dimensional environment, by injecting a reagent inside another one between two horizontal plaques.
The horizontal confinement of the reactor reduces the effects of gravity, while the injection of one reagent within
another reduces the effects of osmotic pressure. Besides, the control of the initial concentrations of the reagents,
and of the flow of injection allows for the study of the relative importance of chemical processes and transport
within the selection of the shape in the precipitate.Credit: University of Granada
Published in the journal PNAS, this study has enabled researchers to obtain in a controlled and reproducible way
a large variety of motives, such as flowers, filaments or spirals, thus facilitating a better comprehension of the
mechanisms that produce their formation.
For instance, the authors of this study have exploited standard methods for the analysis of bi-dimensional motifs
with the aim of elucidating the grown mechanism for the spirals, with the support of an elemental geometric
models.
These results provide a new methodology for the analysis of growth in an non-equilibrium situation, aimed at
obtaining a better control of the physical and chemical properties of self-assembled solid materials.
Credit: University of Granada
Explore further: Researchers devise a means for growing near 2-D chemical gardens (w/ Video)
More information: Florence Haudin, Julyan H. E. Cartwright, Fabian Brau, and A. De Wit, Spiral
precipitation patterns in confined chemical gardens, PNAS 2014; published ahead of print November 10, 2014,
Descargar


Desarrollan una ‘apli’ que permite determinar la fuerza nuclear

76032 Investigadores de la Universidad de Granada han desarrollado una ‘app’ para teléfonos móviles y tablets con sistema operativo Android que permite determinar la fuerza nuclear y predecir las propiedades de estructura del núcleo de helio-4 y de materia nuclear.

 Esta aplicación educativa, denominada Handroica, está dirigida a estudiantes, profesores, investigadores y público en general interesado por la Física. Funciona correctamente en cualquier teléfono o tablet con sistema operativo Android API 7 en adelante.

La finalidad de Handroica es triple. En primer lugar, pretende divulgar algunos de los métodos de la Física Nuclear implementando un cálculo completo ‘ab initio’. En segundo lugar, demostrar la potencialidad de los smartphones como herramienta de trabajo para uso científico. En tercer lugar, sirve para fomentar el uso del lenguaje de programación Android entre investigadores, profesores y estudiantes.

Además pone de manifiesto la potencia de cálculo de los dispositivos portátiles, ya que la ‘app’ se encarga de realizar cálculos de mecánica cuántica avanzada y minimización de funciones con muchas variables en tiempo real. Los resultados de este cálculo con un teléfono son similares a los que se obtienen por otras técnicas complicadísimas con super-ordenadores.

La ‘app’ se está empleando por primera vez durante el curso 2014/15 por los alumnos de cuarto curso del grado en Física en el ámbito del proyecto de innovación docente titulado «Aplicaciones educativas de física para dispositivos Android» dentro del programa de innovación y buenas prácticas docentes de la Universidad de Granada.

La ‘app’ Handroica ha sido desarrollada por los profesores José Enrique Amaro Soriano, Rodrigo Navarro Pérez y Enrique Ruiz Arriola del departamento de Física Atómica, Molecular y Nuclear y del Instituto Carlos I de Física Teórica y Computacional.

El código fuente (en lenguaje JAVA) de la primera versión (que no calculaba la energía de materia nuclear) se publicó por primera vez en un apéndice del libro «Android: programación de dispositivos móviles a través de ejemplo» de José Enrique Amaro Soriano (Editorial Marcombo, Barcelona). Este libro presenta de forma comprensible las bases necesarias para iniciarse en la programación con Android.

El libro (y su segunda parte «El gran libro de programación avanzada con Android») ha sido editado también en México por la editorial Alfaomega con amplia aceptación en Hispanoamérica, ya que es uno de los pocos en castellano. También cuentan con edición e-book en Amazon Kindle.

https://play.google.com/store/apps/details?id=es.ugr.amaro.handroica&hl=es

(En la foto, de izquierda a derecha, los físicos Enrique Ruiz Arriola, Rodrigo Navarro Pérez y José Enrique Amaro Soriano, autores de la aplicación, en su despacho de la UGR)

Descargar