
05 Dic, 2017 · 10:30 al 05 Dic, 2017 · 12:45 Instituto de Matemáticas de la Universidad de Granada (IEMath-GR)
Seminario de Geometría
Stefan Suhr / Thomas Leistner
Conferencias, seminarios, divulgación científica
tweet facebook
- Fecha: Martes 5 de Diciembre, 2017
- Lugar: Instituto de Matemáticas IEMath-GR. Seminario 1ª planta.
- Programa:
- 10:30 – 11:30 h.: «Lyapounov functions for cone fields».
Conferenciante: Stefan Suhr (Ruhr-Universität Bochum).
Resumen: I will introduce Lyapounov functions for cone fields, a generalization of the causal structure of a Lorentzian metric, and present some results on their existence. If time permits I will define a notion of global hyperbolicity for cone fields and give a result on the existence of steep Lyapounov functions for globally hyperbolic cone fields. The material is a cooperation with Patrick Bernard (Université Paris Dauphine). - 11:45 – 12:45 h.: «Geodesic completeness of compact Lorentzian manifolds».
Conferenciante: Thomas Leistner (University of Adelaide).
Resumen: A semi-Riemannian manifold is geodesically complete (or for short, complete) if its maximal geodesics are defined for all times. For Riemannian metrics the compactness of the manifold implies completeness. In contrast, there Lorentzian metrics on the torus that are not complete. Nevertheless, completeness plays an important role for fundamental geometric questions in Lorentzian geometry such as the classification of compact Lorentzian symmetric spaces and in particular for a Lorentzian version of Bieberbach’s theorem. We will study the completeness for compact manifolds that arise from the classification of Lorentzian holonomy groups, which we will briefly review in the talk. These manifolds have abelian holonomy and carry a parallel null vector field. By determining their universal cover we show that they are complete. In the talk we will explain this result and further work in progress, both being joint work with A. Schliebner (Humboldt-Universität zu Berlin).
- 10:30 – 11:30 h.: «Lyapounov functions for cone fields».
- Organiza: Instituto de Investigación en Matemáticas IEMath-GR
- Más información: iemath@ugr.es | http://iemath.ugr.es/