submit news HOME | FEEDBACK



« NAVIGATION »

#### **NEWS**

- Bio/Medicine
- Chemicals
- Defense
- Drug Delivery
- Education
- Electronics
- Energy
- Events
- Grants - Industry
- Investment
- Litigation
- Materials - MEMS
- Nanofabrication
- Nanoparticles
- Nanotubes
- Optics
- Partnership
- Patent - Products
- Ouantum dots
- Research
- Smart Dust - Software

#### **COMPANIES EVENTS**

- Browse by Month
- Current Shows - Previous Shows
- Submit Events

## **FEEDBACK ADVERTISE LINK TO US**

### Ads by Google

- **Earth**
- 10th Planet
- Life on Earth Science Labs

## XML RSS

« PARTNERS » **Become A Nanotechwire** Partner





**Veeco Instruments** 0



Nano Science and Technology Institute

**National Nanotechnology** 

NANOTECHNOLOGY



NATIONAL

INITIATIVE

Nanotechnology at Zyvex

Want to see your **Company or Organization** listed above? Become A **Nanotechwire Partner** Today - click here

« NEWSLETTER »

your email here SUBSCRIBE

« SEARCH »

SEARCH

11/5/2008 9:52:14 PM

# Very cold ice films in laboratory reveal mysteries of universe

The universe is full of water, mostly in the form of very cold ice films deposited on interstellar dust particles, but until recently little was known about the detailed small scale structure. Now the latest quick freezing techniques coupled with sophisticated scanning electron microscopy techniques, are allowing physicists to create ice films in cold conditions similar to outer space and observe the detailed molecular organisation, yielding clues to fundamental questions including possibly the origin of life. Researchers have been surprised by some of the results, not least by the sheer beauty of some of the images created, according to Julyan Cartwright, a specialist in ice structures at the Andalusian Institute for Earth Sciences (IACT) of the Spanish Research Council (CSIC) and the University of Granada in Spain.

#### 50 Hotels in Granada

Book your hotel in Granada online. Find your hotel on a city map! www.booking.com/Hotels-Granada

#### **Pipe Repair Made Easy**

**Qwik Freezer Portable Pipe Freezing** Equipment for pipes 3/8 to 8 Inches www.QwikFreezer.com

Recent discoveries about the structure of ice films in astrophysical conditions at the mesoscale, which is the size just

above the molecular level, were discussed at a recent workshop organised by the European Science Foundation (ESF) and co-chaired by Cartwright alongside C. Ignacio Sainz-Diaz, also from the IACT. As Cartwright noted, many of the discoveries about ice structures at low temperatures were made possible by earlier research into industrial applications involving deposits of thin films upon an underlying substrate (ie the surface, such as a rock, to which the film is attached), such as manufacture of ceramics and semiconductors. In turn the study of ice films could lead to insights of value in such industrial applications.

v v

But the ESF workshop's main focus was on ice in space, usually formed at temperatures far lower than even the coldest places on earth, between 3 and 90 degrees above absolute zero (3-90K). Most of the ice is on dust grains because there are so many of them, but some ice is on larger bodies such as asteroids, comets, cold moons or planets, and occasionally planets capable of supporting life such as Earth. At low temperatures, ice can form different structures at the mesoscale than under terrestrial conditions, and in some cases can be amorphous in form, that is like a glass with the molecules in effect frozen in space, rather than as crystals. For ice to be amorphous, water has to be cooled to its glass transition temperature of about 130 K without ice crystals having formed first. To do this in the laboratory requires rapid cooling, which Cartwright and colleagues achieved in their work with a helium "cold finger" incorporated in a scanning electron microscope to take the images.

As Cartwright observed, ice can exist in a combination of crystalline and amorphous forms, in other words as a mixture of order and disorder, with many variants depending on the temperature at which freezing actually occurred. In his latest work, Cartwright and colleagues have shown that ice at the mesoscale comprises all sorts of different characteristic shapes associated with the temperature and pressure of freezing, also depending on the surface properties of the substrate. For example when formed on a titanium substrate at the very low temperature of 6K, ice has a characteristic cauliflower structure.

Most intriguingly, ice under certain conditions produces biomimetic forms, meaning that they appear life like, with shapes like palm leaves or worms, or even at a smaller scale like bacteria. This led Cartwright to point out Medicine: that researchers should not assume that lifelike forms in objects obtained from space, like Mars rock, is evidence that life actually existed there. "If one goes to another planet and sees small wormlike or palm like structures, one should not immediately call a press conference announcing alien life has been found," said Cartwright. On the other hand the existence of lifelike biomimetic structures in ice suggests that nature may well have copied physics. It is even possible that while ice is too cold to support most life as we know it, it may medical challeng have provided a suitable internal environment for prebiotic life to have emerged.

"It is clear that biology does use physics," said Cartwright. "Indeed, how could it not do? So we shouldn't be surprised to see that sometimes biological structures clearly make use of simple physical principles. Then, going back in time, it seems reasonable to posit that when life first emerged, it would have been using as a container something much simpler than today's cell membrane, probably some sort of simple vesicle of the sort found in soap bubbles. This sort of vesicle can be found in abiotic systems today, both in hot conditions, ir the chemistry associated with 'black smokers' on the sea floor, which is currently favoured as a possible origin of life, but also in the chemistry of sea ice."

This is an intriguing idea that will be explored further in projects spawned by the ESF workshop. This may provide a new twist to the idea that life arrived from space. It may be that the precursors of life came from space, but that the actual carbon based biochemistry of all organisms on Earth evolved on this planet.

The workshop, Euroice2008 was held in Granada, Spain in October 2008

For more infomration please click here

<u>50 Hotels in Granada</u>

Compare hotels and save up to 75%! Save time, book at Booking.com

Pipe Repair Made Easy Qwik Freezer Portable Pipe Freezing Equipment for pipes 3/8 to 8 Inches www.QwikFreezer.com

**Melting Ice** Various FT Correspondents Discuss Climate Change Around The Globe www.FT.com/climate

Ads by Google

« GET LISTED

submit compa submit news

submit event advertise her

Ads by Google

## **Melting Ice**

Various FT Correspondent **Discuss Climat** Change Around The Globe www.FT.com/climat

#### **Hoteles Barate Granada**

Ads by Google

Hotel A Precio Hostal Y Hosta Precio De Anda Por Casa. Reserva! Hoteles-Granada.e:

# Vuelos a Granada, 28€

Ofertas Vuelos regulares y Lov Cost ¡Ahorra tiempo y dinerc con logi! www.logitravel.com

#### **Oposiciones Granada** Oposiciones

Bombero de Granada Sister Exclusivo de Preparación CursosOposiciones

« EVENTS »

# 21st Century Breakthroughs Challenges

Hear what international ext think the greate are, and how the can be met using new technologie unravel the secr of illness and cre the means wher we can all live longer, healthier lives.

More Events



Mark A. Ratner, D Best Price \$2.3

or Buy New \$19 Buy amazon.co

Privacy Informat

Other Headlines from **European Science Foundation** ...

- Very cold ice films in laboratory reveal mysteries of universe
- Europe rallies behind nanotechnology to wean world from fossil fuels
- Multitasking nanotechnology
- Europe gets together to harness quantum physics

v v